There is more than meets the eye following even a mild traumatic brain injury

0

There is more than meets the eye following even a mild traumatic brain injury. While the brain may appear to be intact, new findings reported in Nature suggest that the brain’s protective coverings may feel the brunt of the impact reports Science Daily.

Using a newly developed mouse trauma model, senior author Dorian McGavern, Ph.D., scientist at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, watched specific cells mount an immune response to the injury and try to prevent more widespread damage. Notably, additional findings suggest a similar immune response may occur in patients with mild head injury.

In this study, researchers also discovered that certain molecules, when applied directly to the mouse skull, can bypass the brain’s protective barriers and enter the brain. The findings suggested that, in the mouse trauma model, one of those molecules may reduce effects of brain injury.

Although concussions are common, not much is known about the effects of this type of damage. As part of this study, Lawrence Latour, Ph.D., a scientist from NINDS and the Center for Neuroscience and Regenerative Medicine, examined individuals who had recently suffered a concussion but whose initial scans did not reveal any physical damage to brain tissue. After administering a commonly used dye during MRI scans, Latour and his colleagues saw it leaking into the meninges, the outer covers of the brain, in 49 percent of 142 patients with concussion.

To determine what happens following this mild type of injury, researchers in Dr. McGavern’s lab developed a new model of brain trauma in mice.
“In our mice, there was leakage from blood vessels right underneath the skull bone at the site of injury, similar to the type of effect we saw in almost half of our patients who had mild traumatic brain injury. We are using this mouse model to look at meningeal trauma and how that spreads more deeply into the brain over time,” said Dr. McGavern.

Dr. McGavern and his colleagues also discovered that the intact skull bone was porous enough to allow small molecules to get through to the brain. They showed that smaller molecules reached the brain faster and to a greater extent than larger ones. “It was surprising to discover that all these protective barriers the brain has may not be concrete. You can get something to pass through them,” said Dr. McGavern.

Send your news stories to newsghana101@gmail.com Follow News Ghana on Google News

LEAVE A REPLY

Please enter your comment!
Please enter your name here